- 1. Let K be the operator defined by $K = |\phi\rangle \langle \psi|$, where $|\phi\rangle$ and $|\psi\rangle$ are two vectors of the state space.
 - (a) (5 points) Under what conditions K is Hermitian?
 - (b) (5 points) Calculate K^2 , under what condition K is projector.
 - (c) (5 points) Show that K can always be written in the form $K = \lambda P_1 P_2$, where λ is a constant to be calculated and P_1 and P_2 are projectors.
- 2. (21 points) Consider the following Hamiltonian:

$$H=-(\frac{eB}{mc})S_z$$

Write the Heisenberg equation of motion for S_x , S_y and S_z and obtain the expectation value as a function of time.

- 3. (10 points) Show that for harmonic oscillator that the eigenvalues of the number operator \hat{N} are positive integers or zero.
- 4. The ammonia molecule NH_3 has two different possible configurations: One (which we will call |1 >), where the nitrogen atom is located above the plane spanned by the three H atoms, and the other one (which we will call |2 >) where it is below. These two states span the Hilbert space. In both states, the expectation value of the energy < n|H|n > is the same, E (n = 1, 2). On the other hand, the two states are not eigenstates of the Hamiltonian; in fact, we have < 2|H|1 > = <1|H|2 > = -V (where V is some positive number).
 - (a) (6 points) Write down the Hamiltonian as an outer product of the states $|1\rangle$ and $|2\rangle$
 - (b) (6 points) Find the eigenvalues and eigenvectors of the Hamiltonian.
 - (c) (5 points) What is the probability to find nitrogen atom above or below in the two states?
 - (d) (5 points) Consider the parity operator in which all coordinates change sign. Find the eigenvalues and eigenvectors of the parity operator.
- 5. Consider a particle of mass m and charge q in one dimensional harmonic oscillator, we can define the following operator:

$$U(\lambda) = e^{\lambda(a-a^{\dagger})} = e^{-\lambda a} e^{-\lambda a^{\dagger}} e^{\lambda^{2}/2}$$
$$\tilde{H} = U(\lambda) H U^{\dagger}(\lambda)$$
$$\tilde{a} = U(\lambda) a U^{\dagger}(\lambda)$$
$$\tilde{a^{\dagger}} = U(\lambda) a^{\dagger} U^{\dagger}(\lambda)$$

- (a) (5 points) Show that $\tilde{a} = a \lambda$
- (b) (5 points) Show that $\tilde{a^{\dagger}} = a^{\dagger} \lambda$
- (c) (5 points) Write \tilde{H} in terms of a, a^{\dagger} and λ
- (d) (8 points) If the harmonic oscillator is subjected to an external E uniform electric field, Show that $\lambda = \frac{qE}{\omega} \sqrt{\frac{1}{2m\hbar\omega}}$

Good Luck							
	Question:	1	2	3	4	5	Total
Ü	Points:	15	21	10	22	23	91
	Score:						